矩阵a的平方等于多少(矩阵a的平方怎么算相关内容简介介绍)
导读
每日小编都会为大家带来一些知识类的文章,那么今天小编为大家带来的是矩阵a的平方怎么算方面的消息知识,那么如果各位小伙伴感兴趣的话可
每日小编都会为大家带来一些知识类的文章,那么今天小编为大家带来的是矩阵a的平方怎么算方面的消息知识,那么如果各位小伙伴感兴趣的话可以,认真的查阅一下下面的内容哦。
(1)A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A-E)=n。
(2)由A(A-E)=0可知A-E的每一列都是Ax=0的解,类似地可以知道,A的每一列也都是(A-E)x=0的解。
(3)A的特征值只能是1或0。证明如下:设λ是A的任意一特征值,α是其应对的特征向量,则有Aα=λα,于是(A^2-A)α=(λ^2-λ)α=0,因为α不是零向量,于是只能有λ^2-λ=0,所以λ=1或λ=0
(4)矩阵A一定可以对角化。因为A-E的每一非零列都是Ax=0的解,所以A-E的每一个非零列都是λ=0的特征向量,同理A的每一个非零列都是λ=1的特征向量,再由R(A)+(A-E)=n可知矩阵A有n个线性无关的特征向量,所以A可以对角化。
本文到此结束,希望对大家有所帮助。
免责声明:本文由用户上传,如有侵权请联系删除!